
HADOOP Cluster Setup
-

setting up a HADOOP cluster
using Ambari and CentOS 7

By Henrik B, Sørensen @ Beech Grove
Updated November 7, 2016

Version 1.0

Beech Grove, 2016

Table of Contents
What is Hadoop?..3
Purpose...3

About the author..3
Disclaimer..3
Prerequisites...4

Server Environment..4
Hadoop overview...6
Ambari Installation..10
Adding Spark...22

Test..26
Where to go from here?...28

2

Beech Grove, 2016

What is Hadoop?
The short form :

Hadoop is an ecosystem for cluster computing. Cluster computing is the term used for connecting
multiple computers together in a huge ”computer” in order to parallel process computational tasks. E.g.
bank sometimes connect there computers in order to perform calculations. Hadoop and assistant
frameworks offers a way of collecting, importing and processing data including failover.

The official version is :

The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across
clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of
machines, each offering local computation and storage. Rather than rely on hardware to deliver high-availability, the library
itself is designed to detect and handle failures at the application layer, so delivering a highly-available service on top of a
cluster of computers, each of which may be prone to failures.

Purpose
The purpose of this document is to describe the process of installing a Hadoop Cluster setup using
Ambari. The software used in this process will only be Open Source and / or free of charge and / or own
developed software / scripts.

About the author

Henrik B. Sørensen holds a Bachelors Degree in Electronics Engineering and
has worked for the last 16 years in developing software including distributed
computing systems for financial institutes.

His work in data measurement and processing has lead him over to Hadoop.

He can be contacted at info@beech-grove.eu for comments regarding this
tutorial. This email is not to be used for asking for support of any kind.

Disclaimer
This document is provided as is. No guarantees of any kind is given. Also, it is highly recommended to
consult documentation / best practices for e.g. handling security. The document is meant as a way of
getting started with Hadoop on a cluster setup and not necessarily for production.

Copying of information / passages from this tutorial is allowed, but please quote this tutorial.

3

mailto:info@beech-grove.eu

Beech Grove, 2016

Prerequisites
In order to install Hadoop some things are necesarry.

First of all, you need somewhere to install the servers. It may be physical or virtual machines. In this
document, I’ll use a number of virtual machines located on 2 physical servers running Xen Server. Given
the tutorial of the previous document (”HADOOP Cluster Setup - setting up a HADOOP cluster Ambari
and CentOS 6”) and a multitude of tutorials online, I will save space and not go through the creation of
the virtual machines. One note, though. I use XenCenter to control my virtual servers. For some reason,
the XenCenter and CentOS 7 graphical installer do not play well together. I found a workaround : Hit Tab
when the installation begins and swap quiet with inst.text. This will give a console / text installation
process.

Server Environment
My environment1 is as follows :

Name Address Description

Utilities (utilities) 192.168.1.115 A file server holding a number of script files and demos

Ambari (ambari.cluster) 192.168.1.119 Server hosting the Ambari web site.

Master A (mastera.cluster) 192.168.1.120 Primary NameNode for the cluster

Master B (masterb.cluster) 192.168.1.130 Secondary NameNode for the cluster

Clients A 01-03 (clienta01-3.cluster) 192.168.1.121-123 3 clients in a group

Clients B 01-03 (clientb01-3.cluster) 192.168.1.131-133 3 clients in a group

The naming convention is based on which physical server, the virtual machines are located on.

Each of the machines need to have Java installed (I use the Java-1.8.0-openjdk) and have the
JAVA_HOME environment variable set to the folder containing the Jave Runtime Engine.

/usr/lib/jvm/jre-1.8.0-openjdk

Logging on to the Ambari server, we need to setup a few things. In order to enable the EPEL repository,
setup the SSH key and install the Parallel Distributed Shell (pdsh – for remote shell commands), we
need to run the following script (SetupServerEnv.sh) :

#!/bin/bash
wget http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-8.noarch.rpm
rpm -ivh epel-release-7-8.noarch.rpm
yum --enablerepo=epel -y install sshpass

ssh-keygen -t rsa

yum -y install pdsh-rcmd-ssh

The script also installs a sshpass utility which is used for passing the password to an ssh session.

1 Please note, that the names and addresses used in this document are dummies and not actual addresses / names.

4

Beech Grove, 2016

Setting up the remote logins, I use a little script (CopyHostFiles.sh):

#!/bin/bash
cat $1 | while read line
do
 host=`echo $line | gawk '{print $2}'`

 #Skip localhost
 if [$host != "localhost"]
 then
 #Skip utilities server
 if [$host != "utilities"]
 then
 if [$host != $HOSTNAME]
 then
 echo "Processing $host"
 ssh-keyscan $host >> ~/.ssh/known_hosts
 sshpass -p $2 ssh-copy-id -i /root/.ssh/id_rsa.pub $host
 scp /etc/hosts root@$host:/etc/hosts
 fi
 fi
 fi

done

This script can off course be expanded to incorporate the Java installation and setup and / or to
accommodate other requirements.

Calling this using the following syntax will run through the host file on the server (omitting localhost,
current file and the utilities server), add the remote system to known hosts, enable passwordless login
and copy the host file to the system using the given password2.

./CopyHostFiles.sh /etc/hosts [Password]

2 In this case, the same root password is being used accross the entire cluster. This is NOT best practices, but for a demo
purpose, this will be ok on a closed environment.

5

Beech Grove, 2016

Hadoop overview
Normally, Hadoop is used in huge server systems consisting of many computers. A typical system could
look like this :

Hadoop has its own filesystem called HDFS (Hadoop Distributed File System). It also is divided into 4
parts. The Master server contains 2 services called NameNode and JobTracker and is described in the
official Hadoop Wiki as :

The NameNode is the centerpiece of an HDFS file system. It keeps the directory tree of all files in the
file system, and tracks where across the cluster the file data is kept. It does not store the data of these files
itself.

Client applications talk to the NameNode whenever they wish to locate a file, or when they want to
add/copy/move/delete a file. The NameNode responds the successful requests by returning a list of
relevant DataNode servers where the data lives.

The NameNode is a Single Point of Failure for the HDFS Cluster. HDFS is not currently a High
Availability system. When the NameNode goes down, the file system goes offline. There is an optional
SecondaryNameNode that can be hosted on a separate machine. It only creates checkpoints of the
namespace by merging the edits file into the fsimage file and does not provide any real redundancy.
Hadoop 0.21+ has a BackupNameNode that is part of a plan to have an HA name service, but it needs
active contributions from the people who want it (i.e. you) to make it Highly Available.

Client applications talk to the NameNode whenever they wish to locate a file, or when they want to
add/copy/move/delete a file. The NameNode responds the successful requests by returning a list of
relevant DataNode servers where the data lives.

6

Illustration 1: Hadoop Cluster overview

Beech Grove, 2016

The NameNode is a Single Point of Failure for the HDFS Cluster. HDFS is not currently a High
Availability system. When the NameNode goes down, the file system goes offline. There is an optional
SecondaryNameNode that can be hosted on a separate machine. It only creates checkpoints of the
namespace by merging the edits file into the fsimage file and does not provide any real redundancy.
Hadoop 0.21+ has a BackupNameNode that is part of a plan to have an HA name service, but it needs
active contributions from the people who want it (i.e. you) to make it Highly Available.

The JobTracker is the service within Hadoop that farms out MapReduce tasks to specific nodes in the
cluster, ideally the nodes that have the data, or at least are in the same rack.

Client applications submit jobs to the Job tracker. The JobTracker talks to the NameNode to determine the
location of the data. The JobTracker locates TaskTracker nodes with available slots at or near the data.
The JobTracker submits the work to the chosen TaskTracker nodes. The TaskTracker nodes are
monitored. If they do not submit heartbeat signals often enough, they are deemed to have failed and the
work is scheduled on a different TaskTracker.

A TaskTracker will notify the JobTracker when a task fails. The JobTracker decides what to do then: it
may resubmit the job elsewhere, it may mark that specific record as something to avoid, and it may may
even blacklist the TaskTracker as unreliable. When the work is completed, the JobTracker updates its
status.

Each of the Clients holds the DataNode and the TaskTracker :

A DataNode stores data in the HDFS. A functional filesystem has more than one DataNode, with data
replicated across them.

On startup, a DataNode connects to the NameNode; spinning until that service comes up. It then responds
to requests from the NameNode for filesystem operations.

Client applications can talk directly to a DataNode, once the NameNode has provided the location of the
data. Similarly, MapReduce operations farmed out to TaskTracker instances near a DataNode, talk
directly to the DataNode to access the files. TaskTracker instances can, indeed should, be deployed on the
same servers that host DataNode instances, so that MapReduce operations are performed close to the
data.

DataNode instances can talk to each other, which is what they do when they are replicating data.

A TaskTracker is a node in the cluster that accepts tasks - Map, Reduce and Shuffle operations - from a
JobTracker.

Every TaskTracker is configured with a set of slots, these indicate the number of tasks that it can accept.
When the JobTracker tries to find somewhere to schedule a task within the MapReduce operations, it first
looks for an empty slot on the same server that hosts the DataNode containing the data, and if not, it looks
for an empty slot on a machine in the same rack.

The TaskTracker spawns a separate JVM processes to do the actual work; this is to ensure that process
failure does not take down the task tracker. The TaskTracker monitors these spawned processes, capturing
the output and exit codes. When the process finishes, successfully or not, the tracker notifies the

7

Beech Grove, 2016

JobTracker. The TaskTrackers also send out heartbeat messages to the JobTracker, usually every few
minutes, to reassure the JobTracker that it is still alive. These message also inform the JobTracker of the
number of available slots, so the JobTracker can stay up to date with where in the cluster work can be
delegated.

The whole relationship between the various part can be illustrated this way :

Illustration 2: Hadoop services relation

Normally, a failover strategry will be implemented having aSecondary NameNode, but we will not go
into details about this.

The Hadoop eco system includes according to official wiki :

Ambari™ A web-based tool for provisioning, managing, and monitoring Apache Hadoop clusters which includes
support for Hadoop HDFS, Hadoop MapReduce, Hive, HCatalog, HBase, ZooKeeper, Oozie, Pig and

Sqoop. Ambari also provides a dashboard for viewing cluster health such as heatmaps and ability to view
MapReduce, Pig and Hive applications visually alongwith features to diagnose their performance

characteristics in a user-friendly manner.

Avro™ A data serialization system.

Cassandra™ A scalable multi-master database with no single points of failure.

Chukwa™ A data collection system for managing large distributed systems.

Hbase™ A scalable, distributed database that supports structured data storage for large tables.

Hive™ A data warehouse infrastructure that provides data summarization and ad hoc querying.

Mahout™ A Scalable machine learning and data mining library.

8

Beech Grove, 2016

Pig™ A high-level data-flow language and execution framework for parallel computation.

Spark™ A fast and general compute engine for Hadoop data. Spark provides a simple and expressive programming

model that supports a wide range of applications, including ETL, machine learning, stream processing, and
graph computation.

Tez™ A generalized data-flow programming framework, built on Hadoop YARN, which provides a powerful and

flexible engine to execute an arbitrary DAG of tasks to process data for both batch and interactive use-cases.
Tez is being adopted by Hive™, Pig™ and other frameworks in the Hadoop ecosystem, and also by other

commercial software (e.g. ETL tools), to replace Hadoop™ MapReduce as the underlying execution engine.

ZooKeeper™ A high-performance coordination service for distributed applications.

For the setup, we’ll use Ambari, Spark and ZooKeeper and setup 2 Master Nodes (1 primary and 1
secondary) and 6 Slave Nodes.

9

Beech Grove, 2016

Ambari Installation
In our case, we only need the system for developing solutions for running on Hadoop clusters and also for
doing some computations meaning that we will setup up a smaller version. So, we’ll set up 2 Master
Servers (Name Node) and 6 Workers (Data Nodes) plus a single machine for running the Ambari
server.

Using the virtual machines, we now need to setup the systems. Provided we have the 9 virtual images as
mentioned in the Server Environment section, we continue to install Ambari on them. PDSH enables us to
run commands on other hosts. Hence, we run the InstallAmbari.sh script providing the host file as an
argument :

#!/bin/bash
cat $1 | while read line

do
 host=`echo $line | gawk '{print $2}'`

 #Skip localhost
 if [$host != "localhost"]
 then
 #Skip utilities server
 if [$host != "utilities"]
 then
 if [$host != $HOSTNAME]
 then
 echo "Processing $host"

#Retrieve the Repository files
pdsh -w $host "yum -y install wget"
pdsh -w $host "wget http://public-repo-

1.hortonworks.com/ambari/centos7/2.x/updates/2.1.2.1/ambari.repo -O
/etc/yum.repos.d/ambari.repo" | sort

#Install the Ambari Agent
pdsh -w $host "yum -y install ambari-agent" | sort
#Setup the Init file to point towards the ambari.cluster server
pdsh -w $host "sed -i 's/hostname=localhost/hostname=ambari.cluster/g'

/etc/ambari-agent/conf/ambari-agent.ini"
pdsh -w $host "sed -i 's/hostname=localhost/hostname=ambari.cluster/g'

/etc/ambari-agent/conf/ambari-agent.ini"
pdsh -w $host "chkconfig ambari-agent on"
pdsh -w $host "service ambari-agent restart"
pdsh -w $host "systemctl stop firewalld"
pdsh -w $host "systemctl disable firewalld"

 fi
 fi
 fi

done

wget http://public-repo-1.hortonworks.com/ambari/centos7/2.x/updates/2.1.2.1/ambari.repo
-O /etc/yum.repos.d/ambari.repo
yum -y install ambari-agent
yum -y install ambari-server
ambari-server setup -j /usr/lib/jvm/jre-1.8.0-openjdk
ambari-server start
systemctl stop firewalld
systemctl disable firewalld

Executing the script will take a while – a number of files must be downloaded.

10

Beech Grove, 2016

Having waited for the commands to finish the Ambari website should now be available in a browser on
port 8080 :

Login using ”admin” as both password and username and change it before proceeding :

Go to users and click the ”admin” user :

11

Illustration 3: Ambari, Initial login

Illustration 4: Ambari, Initial welcome screen

Beech Grove, 2016

Go back to the frontpage by clicking the Ambari logo.

Now, we need to create a cluster. We click the ”Launch Install Wizard” button in order to be guided
through the cluster creation :

12

Illustration 5: Ambari, User management

Illustration 6: Ambari, User editing

Beech Grove, 2016

First, we name the cluster (in this case ”clustr” - not very inspiring).

Next, we select the Hadoop stack (version) to use. The current installation supports up to Hadoop 2.2, so
we’ll select that.

13

Illustration 7: Ambari Wizard, Name Cluster

Illustration 8: Ambari Wizard, Stack selection.

Beech Grove, 2016

In the Advanced Repository Options, I’ve disabled all but the RedHat7 repository, since we’re using
CentOS 7 as our operating system :

Moving on, we have to select the hosts to install the services on.

We select all the machines running the agents (besides the one hosting the web site). Please note, that the
Fully Qualified Domain Names are used. Due to our setup, we also select manual registration. A
verification of the host names is shown in order to validate the patterns added :

14

Illustration 9: Ambari Wizard, Repositories

Illustration 10: Ambari Wizard, Install Options

Beech Grove, 2016

Accept the pattern and messages and proceed for the registration process :

Having performed the registration, we proceed to add services

15

Illustration 11: Ambari Wizard, Pattern validation

Illustration 12: Ambari Wizard, Confirm Hosts

Beech Grove, 2016

Clicking on the link will display the details. Since, we’re using the CentOS 7, which uses the ntpdate
service for synchronizing time, we ignore the warning :

Proceed to select the services to run on the cluster. In our case, we wish to install a bare minimum
Hadoop cluster, also to prevent the installation to timeout. Later, we will go back and add additional
services to run on the cluster.

So for now, we will stick to :

• HDFS
• YARN + MapReduce 2
• ZooKeeper
• Ambari Metrics

16

Illustration 13: Ambari Wizard, Registration Completed.

Illustration 14: Service Issues

Beech Grove, 2016

Assigning the Masters of the system. We will attempt to put the load evenly on the 2 masters (mastera
and masterb).

17

Illustration 15: Initial Service Selection

Beech Grove, 2016

Next, we setup the clients :

We select all other machines, leaving out the NFSGateway, since we currently do not use it.

Now, we move on to customization of the services. According to the UI, all configurations have been
addressed :

18

Illustration 16: Ambari Wizard, Assign Masters

Illustration 17: Ambari Wizard, Assign Slaves and clients

Beech Grove, 2016

We can now review our selections and proceed, if we’re OK with the settings:

Upon reviewing the settings, we proceed to start installing the cluster.

19

Illustration 18: Ambari Wizard

Illustration 19: Installation Review

Beech Grove, 2016

This will take some time based on the internet connection, hardware etc.
Having ended the installation and starting of the services (this may fail due to timeouts. But don’t worry.
Just restart a couple of times until all services startup).

20

Illustration 20: Ambari Wizard, Installation

Illustration 21: End of Service installation

Beech Grove, 2016

After the installation process has ended, go on to get the summary of the installation :

Reading the summary, we are informed, that everything worked out fine.

Illustration 22: Installation Summary

Finally, we get an updated frontpage showing us the status of the cluster :

Now, we should start adding more services to the cluster.

21

Illustration 23: Cluster control Panel

Beech Grove, 2016

Adding Spark
When installing the cluster, we did not install Spark right away. This would have been the easiest.
However, given the internet connection it would result in a time out due to the long time downloading
packages3.

On the frontpage, select Add Service in the Actions menu

Scroll down and select Spark :

We assign the mastera to run the Spark History server :

3 There are ways around this. E.g. creating a local repository of packages. This, however, is beyond the scope of this
document.

22

Illustration 24: Add Service

Illustration 25: Select Spark

Illustration 26: Select Spark History server

Beech Grove, 2016

Select all (except masters) as clients :

I’ll go for the default configuration :

Review the configuration and start the deployment process :

23

Illustration 27: Assign Spark Clients

Illustration 28: Customize Spark Configuration

Beech Grove, 2016

Wait for the deployment to end :

This will take a while.

24

Illustration 29: Review Spark Configuration

Illustration 30: Spark Installation and Initialization

Beech Grove, 2016

Having completed the installation, the Summary informs us, that certain services need to be restarted

Having installed the Spark service, we are once more presented with the frontpage. The only change is
now another service

25

Illustration 31: End of installation

Illustration 32: Spark Installation Summary

Beech Grove, 2016

Test
In order to test our Spark installation, we use the demo ”Spark Pi” application.

Login into mastera and run the following code :

cd /usr/hdp/current/spark-client

su spark

./bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn-client --num-
executors 1 --driver-memory 512m --executor-memory 512m --executor-cores 1 lib/spark-
examples*.jar 10

This will soon fill the whole screen with a lot of log messages.

26

Illustration 33: Spark installation Frontpage

Illustration 34: Raw output

Beech Grove, 2016

Going to the Quick Links menu and ResourceManager UI, we can navigate to the overview of running
Jobs.

The application overview shows a list of applications

When the application has run to the end, the result is presented on the screen:

16/11/07 00:31:08 INFO DAGScheduler: ResultStage 0 (reduce at SparkPi.scala:36) finished in 15.531 s
16/11/07 00:31:08 INFO YarnScheduler: Removed TaskSet 0.0, whose tasks have all completed, from pool
16/11/07 00:31:08 INFO DAGScheduler: Job 0 finished: reduce at SparkPi.scala:36, took 16.003066 s
Pi is roughly 3.141908

The example is not especially usable. However, this is just a test of the installation.

27

Illustration 35: Find Navigation Links

Illustration 36: Spark application overview

Beech Grove, 2016

Where to go from here?
Having a Hadoop cluster without using it is no fun. So, what should we use it for?

A Hadoop cluster is normally used for processing data from various sources, compressing and processing
it into a simple result. The whole process is shown in the following illustration :

Having run the various samples on the cluster, verifying the state of the of the cluster, the example really
not serve any practical uses.

That being said, the cluster now is ready to start working. In order to get acquainted wich Hadoop and
Spark, I suggest you download a large dataset. A listing of these can be found at :

http://hadoopilluminated.com/hadoop_illuminated/Public_Bigdata_Sets.html

The data can be fed into the cluster and processed using various tools such as Spark, R etc.

Also, experiments with other types of services can be performed using the cluster.

So, happy Hadooping, and please feel free to keep an eye out for more intros on Hadoop.

/Henrik

28

Illustration 37: Hadoop data flow

http://hadoopilluminated.com/hadoop_illuminated/Public_Bigdata_Sets.html

	What is Hadoop?
	Purpose
	About the author

	Disclaimer
	Prerequisites
	Server Environment

	Hadoop overview
	Ambari Installation
	Adding Spark
	Test

	Where to go from here?

